亚洲综合原千岁中文字幕_国产精品99久久久久久久vr_无码人妻aⅴ一区二区三区浪潮_成人h动漫精品一区二区三

主頁 > 知識庫 > Python的collections模塊真的很好用

Python的collections模塊真的很好用

熱門標簽:qt百度地圖標注 遼寧智能外呼系統需要多少錢 地圖地圖標注有嘆號 正安縣地圖標注app 電銷機器人系統廠家鄭州 螳螂科技外呼系統怎么用 400電話申請資格 阿里電話機器人對話 舉辦過冬奧會的城市地圖標注

collections是實現了特定目標的容器,以提供Python標準內建容器 dict , list , set , 和 tuple 的替代選擇。為了讓大家更好的認識,本文詳細總結collections的相關知識,一起來學習吧!

collections模塊:實現了特定目標的容器,以提供Python標準內建容器 dict、list、set、tuple 的替代選擇。

Counter:字典的子類,提供了可哈希對象的計數功能。

defaultdict:字典的子類,提供了一個工廠函數,為字典查詢提供了默認值。

OrderedDict:字典的子類,保留了他們被添加的順序。

namedtuple:創建命名元組子類的工廠函數。

deque:類似列表容器,實現了在兩端快速添加(append)和彈出(pop)。

ChainMap:類似字典的容器類,將多個映射集合到一個視圖里面。

Counter

Counter是一個dict子類,主要是用來對你訪問的對象的頻率進行計數。

>>> import collections
>>> # 統計字符出現的次數
... collections.Counter('hello world')
Counter({'l': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})
>>> # 統計單詞個數
... collections.Counter('hello world hello lucy'.split())
Counter({'hello': 2, 'world': 1, 'lucy': 1})

常用方法:

elements():返回一個迭代器,每個元素重復計算的個數,如果一個元素的計數小于1,就會被忽略。

most_common([n]):返回一個列表,提供n個訪問頻率最高的元素和計數

subtract([iterable-or-mapping]):從迭代對象中減去元素,輸入輸出可以是0或者負數

update([iterable-or-mapping]):從迭代對象計數元素或者從另一個 映射對象 (或計數器) 添加。

>>> c = collections.Counter('hello world hello lucy'.split())
>>> c
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 獲取指定對象的訪問次數,也可以使用get方法
... c['hello']
2
>>> # 查看元素
... list(c.elements())
['hello', 'hello', 'world', 'lucy']
>>> c1 = collections.Counter('hello world'.split())
>>> c2 = collections.Counter('hello lucy'.split())
>>> c1
Counter({'hello': 1, 'world': 1})
>>> c2
Counter({'hello': 1, 'lucy': 1})
>>> # 追加對象,+或者c1.update(c2)
... c1+c2
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 減少對象,-或者c1.subtract(c2)
... c1-c2
Counter({'world': 1})
>>> # 清除
... c.clear()
>>> c
Counter()

defaultdict

返回一個新的類似字典的對象。defaultdict 是內置 dict 類的子類。

class collections.defaultdict([default_factory[, ...]])

>>> d = collections.defaultdict()
>>> d
defaultdict(None, {})
>>> e = collections.defaultdict(str)
>>> e
defaultdict(class 'str'>, {})

例子

defaultdict的一個典型用法是使用其中一種內置類型(如str、int、list或dict等)作為默認工廠,這些內置類型在沒有參數調用時返回空類型。

>>> e = collections.defaultdict(str)
>>> e
defaultdict(class 'str'>, {})
>>> e['hello']
''
>>> e
defaultdict(class 'str'>, {'hello': ''})
>>> # 普通字典調用不存在的鍵時,報錯
... e1 = {}
>>> e1['hello']
Traceback (most recent call last):
 File "stdin>", line 1, in module>
KeyError: 'hello'

使用 int 作為 default_factory

>>> fruit = collections.defaultdict(int)
>>> fruit['apple'] = 2
>>> fruit
defaultdict(class 'int'>, {'apple': 2})
>>> fruit['banana'] # 沒有對象時,返回0
0
>>> fruit
defaultdict(class 'int'>, {'apple': 2, 'banana': 0})

使用 list 作為 default_factory

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = collections.defaultdict(list)
>>> for k,v in s:
...   d[k].append(v)
...
>>> d
defaultdict(class 'list'>, {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]})
>>> d.items()
dict_items([('yellow', [1, 3]), ('blue', [2, 4]), ('red', [1])])
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

使用 dict 作為 default_factory

```python
>>> nums = collections.defaultdict(dict)
>>> nums[1] = {'one':1}
>>> nums
defaultdict(, {1: {'one': 1}})
>>> nums[2]
{}
>>> nums
defaultdict(, {1: {'one': 1}, 2: {}})

使用 set 作為 default_factory

```python
>>> types = collections.defaultdict(set)
>>> types['手機'].add('華為')
>>> types['手機'].add('小米')
>>> types['顯示器'].add('AOC')
>>> types
defaultdict(class 'set'>, {'手機': {'華為', '小米'}, '顯示器': {'AOC'}})

## OrderedDict

Python字典中的鍵的順序是任意的,它們不受添加的順序的控制。

collections.OrderedDict 類提供了保留他們添加順序的字典對象。

```python
>>> o = collections.OrderedDict()
>>> o['k1'] = 'v1'
>>> o['k3'] = 'v3'
>>> o['k2'] = 'v2'
>>> o
OrderedDict([('k1', 'v1'), ('k3', 'v3'), ('k2', 'v2')])

如果在已經存在的 key 上添加新的值,將會保留原來的 key 的位置,然后覆蓋 value 值。

```python
>>> o['k1'] = 666
>>> o
OrderedDict([('k1', 666), ('k3', 'v3'), ('k2', 'v2')])
>>> dict(o)
{'k1': 666, 'k3': 'v3', 'k2': 'v2'}

## namedtuple

三種定義命名元組的方法:第一個參數是命名元組的構造器(如下的:Person1,Person2,Person3)

```python
>>> P1 = collections.namedtuple('Person1',['name','age','height'])
>>> P2 = collections.namedtuple('Person2','name,age,height')
>>> P3 = collections.namedtuple('Person3','name age height')

實例化命名元組

```python
>>> lucy = P1('lucy',23,180)
>>> lucy
Person1(name='lucy', age=23, height=180)
>>> jack = P2('jack',20,190)
>>> jack
Person2(name='jack', age=20, height=190)
>>> lucy.name # 直接通過 實例名.屬性 來調用
'lucy'
>>> lucy.age
23

deque

collections.deque 返回一個新的雙向隊列對象,從左到右初始化(用方法 append()),從 iterable(迭代對象)數據創建。如果 iterable 沒有指定,新隊列為空。

collections.deque 隊列支持線程安全,對于從兩端添加(append)或者彈出(pop),復雜度O(1)。

雖然 list 對象也支持類似操作,但是這里優化了定長操作(pop(0)、insert(0,v))的開銷。

如果 maxlen 沒有指定或者是 None ,deque 可以增長到任意長度。否則,deque 就限定到指定最大長度。一旦限定長度的 deque 滿了,當新項加入時,同樣數量的項就從另一端彈出。

支持的方法:

append(x):添加x到右端。

appendleft(x):添加x到左端。

clear():清除所有元素,長度變為0。

copy():創建一份淺拷貝。

count(x):計算隊列中個數等于x的元素。

extend(iterable):在隊列右側添加iterable中的元素。

extendleft(iterable):在隊列左側添加iterable中的元素,注:在左側添加時,iterable參數的順序將會反過來添加。

index(x[,start[,stop]]):返回第 x 個元素(從 start 開始計算,在 stop 之前)。返回第一個匹配,如果沒找到的話,拋出 ValueError 。

insert(i,x):在位置 i 插入 x 。注:如果插入會導致一個限長deque超出長度 maxlen 的話,就拋出一個 IndexError 。

pop():移除最右側的元素。

popleft():移除最左側的元素。

remove(value):移去找到的第一個 value。沒有拋出ValueError。

reverse():將deque逆序排列。返回 None 。

maxlen:隊列的最大長度,沒有限定則為None。

>>> d = collections.deque(maxlen=10)
>>> d
deque([], maxlen=10)
>>> d.extend('python')
>>> [i.upper() for i in d]
['P', 'Y', 'T', 'H', 'O', 'N']
>>> d.append('e')
>>> d.appendleft('f')
>>> d.appendleft('g')
>>> d.appendleft('h')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'e'], maxlen=10)
>>> d.appendleft('i')
>>> d
deque(['i', 'h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n'], maxlen=10)
>>> d.append('m')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'm'], maxlen=10)

## ChainMap

問題背景是我們有多個字典或者映射,想把它們合并成為一個單獨的映射,有人說可以用update進行合并,這樣做的問題就是新建了一個數據結構以致于當我們對原來的字典進行更改的時候不會同步。如果想建立一個同步的查詢方法,可以使用 ChainMap。

可以用來合并兩個或者更多個字典,當查詢的時候,從前往后依次查詢。簡單使用:

```python
>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> combined1 = collections.ChainMap(d1,d2)
>>> combined2 = collections.ChainMap(d2,d1)
>>> combined1
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> combined2
ChainMap({'orange': 2, 'apple': 3, 'pike': 1}, {'apple': 1, 'banana': 2})
>>> for k,v in combined1.items():
...   print(k,v)
...
orange 2
apple 1
pike 1
banana 2
>>> for k,v in combined2.items():
...   print(k,v)
...
apple 3
banana 2
orange 2
pike 1
/code>/pre>

有一個注意點就是當對ChainMap進行修改的時候總是只會對第一個字典進行修改,如果第一個字典不存在該鍵,會添加。

pre>code class="language-python line-numbers">>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> c = collections.ChainMap(d1,d2)
>>> c
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['apple']
1
>>> c['apple'] = 2
>>> c
ChainMap({'apple': 2, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['pike']
1
>>> c['pike'] = 3
>>> c
ChainMap({'apple': 2, 'banana': 2, 'pike': 3}, {'orange': 2, 'apple': 3, 'pike': 1})

從原理上面講,ChainMap 實際上是把放入的字典存儲在一個隊列中,當進行字典的增加刪除等操作只會在第一個字典上進行,當進行查找的時候會依次查找,new_child() 方法實質上是在列表的第一個元素前放入一個字典,默認是{},而 parents 是去掉了列表開頭的元素。

```python
>>> a = collections.ChainMap()
>>> a['x'] = 1
>>> a
ChainMap({'x': 1})
>>> b = a.new_child()
>>> b
ChainMap({}, {'x': 1})
>>> b['x'] = 2
>>> b
ChainMap({'x': 2}, {'x': 1})
>>> b['y'] = 3
>>> b
ChainMap({'x': 2, 'y': 3}, {'x': 1})
>>> a
ChainMap({'x': 1})
>>> c = a.new_child()
>>> c
ChainMap({}, {'x': 1})
>>> c['x'] = 1
>>> c['y'] = 1
>>> c
ChainMap({'x': 1, 'y': 1}, {'x': 1})
>>> d = c.parents
>>> d
ChainMap({'x': 1})
>>> d is a
False
>>> d == a
True

>>> a = {'x':1,'z':3}
>>> b = {'y':2,'z':4}
>>> c = collections.ChainMap(a,b)
>>> c
ChainMap({'x': 1, 'z': 3}, {'y': 2, 'z': 4})
>>> c.maps
[{'x': 1, 'z': 3}, {'y': 2, 'z': 4}]
>>> c.parents
ChainMap({'y': 2, 'z': 4})
>>> c.parents.maps
[{'y': 2, 'z': 4}]
>>> c.parents.parents
ChainMap({})
>>> c.parents.parents.parents
ChainMap({})

到此這篇關于Python的collections模塊真的很好用的文章就介紹到這了,更多相關Python的collections模塊內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python 中的collections.OrderedDict() 用法
  • Python collections模塊的使用技巧
  • Java基礎詳解之集合框架工具Collections
  • 如何在C#中使用只讀的 Collections
  • Java中Collections.emptyList()的注意事項
  • Java Collections類操作集合詳解
  • python collections模塊的使用
  • Python collections模塊的使用方法
  • Java Collections.shuffle()方法案例詳解

標簽:興安盟 隨州 合肥 淘寶好評回訪 濟源 昭通 信陽 阜新

巨人網絡通訊聲明:本文標題《Python的collections模塊真的很好用》,本文關鍵詞  Python,的,collections,模塊,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Python的collections模塊真的很好用》相關的同類信息!
  • 本頁收集關于Python的collections模塊真的很好用的相關信息資訊供網民參考!
  • 推薦文章
    精品在线免费播放| 高清一级淫片a级中文字幕 | 国产91精品系列在线观看| 日韩av东京社区男人的天堂| 欧美日本免费| 国产精品1024永久免费视频| 欧美爱爱动态| 亚洲 激情| 一级毛片视频播放| 中文字幕一区二区三区 精品| 国产成人啪精品| 亚洲不卡一区二区三区在线| 成人免费网站视频ww| 日本特黄一级| 精品视频一区二区三区免费| 91麻豆精品国产片在线观看| 国产不卡在线观看| 欧美a级片视频| 韩国三级香港三级日本三级| 国产网站免费在线观看| 韩国毛片免费大片| 精品视频一区二区| 国产一区二区精品尤物| 天天做人人爱夜夜爽2020毛片| 亚欧成人毛片一区二区三区四区| a级精品九九九大片免费看| 国产视频一区二区在线播放| 一本伊大人香蕉高清在线观看| 九九九国产| 欧美爱爱动态| 成人高清免费| 国产麻豆精品免费视频| 国产不卡在线观看视频| 人人干人人插| 日韩在线观看免费| 国产91精品系列在线观看| 成人影院久久久久久影院| 欧美激情一区二区三区在线| 国产网站在线| 午夜激情视频在线观看| 成人高清视频在线观看| 四虎影视库| 欧美激情伊人| 日本免费区| 欧美激情一区二区三区视频| 精品国产一区二区三区精东影业| 国产a视频| 欧美另类videosbestsex视频 | 欧美1区| 午夜在线观看视频免费 成人| 沈樵在线观看福利| 亚洲精品影院久久久久久| 91麻豆精品国产自产在线观看一区 | 久久久久久久久综合影视网| 美国一区二区三区| 日本伦理片网站| 九九干| 久久国产一区二区| 天天做人人爱夜夜爽2020| 深夜做爰性大片中文| 青青久热| 精品在线观看国产| 91麻豆精品国产片在线观看| 国产成a人片在线观看视频| 九九干| 国产美女在线观看| 成人免费网站久久久| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 亚洲天堂免费| 精品国产一区二区三区久| 四虎影视精品永久免费网站| 国产伦精品一区二区三区无广告| 国产伦精品一区二区三区无广告 | 韩国毛片免费| 国产91素人搭讪系列天堂| 你懂的福利视频| 中文字幕97| 日本免费区| 国产91丝袜高跟系列| 日韩中文字幕在线播放| 可以在线看黄的网站| 欧美国产日韩在线| 高清一级毛片一本到免费观看| 人人干人人插| 91麻豆国产福利精品| 久久成人亚洲| 日日夜夜婷婷| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 欧美大片aaaa一级毛片| 欧美大片a一级毛片视频| 欧美另类videosbestsex久久| 免费一级片网站| 999精品影视在线观看| 精品视频在线看| 国产综合91天堂亚洲国产| 国产网站免费视频| 欧美国产日韩精品| 尤物视频网站在线| 久久久久久久久综合影视网| 欧美一区二区三区性| 可以免费看污视频的网站| 黄色免费三级| 欧美日本免费| 日韩专区亚洲综合久久| 91麻豆国产福利精品| 韩国三级一区| 精品视频在线看 | 亚洲天堂一区二区三区四区| 天天做日日爱| 欧美一区二区三区在线观看| 国产不卡在线观看视频| 欧美激情一区二区三区视频 | 午夜久久网| 可以在线看黄的网站| 国产亚洲精品成人a在线| 尤物视频网站在线| 国产a免费观看| 精品视频在线看| 国产91丝袜高跟系列| 欧美大片a一级毛片视频| 99热热久久| 你懂的福利视频| 沈樵在线观看福利| 国产高清在线精品一区a| 国产不卡在线播放| 成人免费观看网欧美片| 欧美一级视频免费| 天天色色网| 99热热久久| 精品视频免费观看| 青草国产在线观看| 青青久久精品国产免费看| 国产国语对白一级毛片| 免费国产一级特黄aa大片在线| 国产麻豆精品高清在线播放| 久久99青青久久99久久| 日本免费乱人伦在线观看 | 日本伦理网站| 高清一级片| 欧美另类videosbestsex视频 | 一级女性全黄生活片免费 | 成人影院久久久久久影院| 午夜欧美福利| 91麻豆tv| 亚洲精品影院| 精品视频在线观看视频免费视频 | 国产一区二区精品久久| 国产一区精品| 久久国产影院| 欧美另类videosbestsex| 欧美激情一区二区三区在线播放| 中文字幕一区二区三区精彩视频| 精品久久久久久中文| 青青青草视频在线观看| 久久精品成人一区二区三区| 成人a大片高清在线观看| 九九九在线视频| 青青青草影院| 精品国产一区二区三区国产馆| 精品久久久久久免费影院| 亚欧成人毛片一区二区三区四区| 国产伦理精品| 久久精品成人一区二区三区| 国产一区二区精品| 免费的黄色小视频| 美女免费毛片| 久久精品成人一区二区三区| 99久久精品国产国产毛片 | 国产伦精品一区二区三区在线观看 | 国产伦久视频免费观看 视频| 久久国产精品只做精品| 久久精品免视看国产明星| 精品视频免费在线| 精品久久久久久中文字幕一区| 国产精品自拍亚洲| 在线观看成人网| 久久99中文字幕久久| 国产伦精品一区三区视频| 一级女性全黄久久生活片| 国产亚洲免费观看| 999久久66久6只有精品| 香蕉视频一级| 可以免费看污视频的网站| 亚洲wwwwww| 国产91视频网| 色综合久久天天综合观看| 日日夜夜婷婷| 91麻豆精品国产高清在线| 免费一级片网站| 欧美电影免费看大全| 欧美大片aaaa一级毛片| 香蕉视频亚洲一级| 超级乱淫黄漫画免费| 久久99这里只有精品国产| 精品视频在线观看一区二区| 日本免费看视频| 亚洲天堂免费| 欧美激情在线精品video| 亚洲爆爽| 欧美激情一区二区三区视频 |