亚洲综合原千岁中文字幕_国产精品99久久久久久久vr_无码人妻aⅴ一区二区三区浪潮_成人h动漫精品一区二区三

主頁 > 知識庫 > pytorch LayerNorm參數(shù)的用法及計算過程

pytorch LayerNorm參數(shù)的用法及計算過程

熱門標簽:天津電話機器人公司 應電話機器人打電話違法嗎 河北防封卡電銷卡 手機網(wǎng)頁嵌入地圖標注位置 電銷機器人的風險 地圖標注線上如何操作 開封語音外呼系統(tǒng)代理商 開封自動外呼系統(tǒng)怎么收費 400電話辦理哪種

說明

LayerNorm中不會像BatchNorm那樣跟蹤統(tǒng)計全局的均值方差,因此train()和eval()對LayerNorm沒有影響。

LayerNorm參數(shù)

torch.nn.LayerNorm(
        normalized_shape: Union[int, List[int], torch.Size],
        eps: float = 1e-05,
        elementwise_affine: bool = True)

normalized_shape

如果傳入整數(shù),比如4,則被看做只有一個整數(shù)的list,此時LayerNorm會對輸入的最后一維進行歸一化,這個int值需要和輸入的最后一維一樣大。

假設此時輸入的數(shù)據(jù)維度是[3, 4],則對3個長度為4的向量求均值方差,得到3個均值和3個方差,分別對這3行進行歸一化(每一行的4個數(shù)字都是均值為0,方差為1);LayerNorm中的weight和bias也分別包含4個數(shù)字,重復使用3次,對每一行進行仿射變換(仿射變換即乘以weight中對應的數(shù)字后,然后加bias中對應的數(shù)字),并會在反向傳播時得到學習。

如果輸入的是個list或者torch.Size,比如[3, 4]或torch.Size([3, 4]),則會對網(wǎng)絡最后的兩維進行歸一化,且要求輸入數(shù)據(jù)的最后兩維尺寸也是[3, 4]。

假設此時輸入的數(shù)據(jù)維度也是[3, 4],首先對這12個數(shù)字求均值和方差,然后歸一化這個12個數(shù)字;weight和bias也分別包含12個數(shù)字,分別對12個歸一化后的數(shù)字進行仿射變換(仿射變換即乘以weight中對應的數(shù)字后,然后加bias中對應的數(shù)字),并會在反向傳播時得到學習。

假設此時輸入的數(shù)據(jù)維度是[N, 3, 4],則對著N個[3,4]做和上述一樣的操作,只是此時做仿射變換時,weight和bias被重復用了N次。

假設此時輸入的數(shù)據(jù)維度是[N, T, 3, 4],也是一樣的,維度可以更多。

注意:顯然LayerNorm中weight和bias的shape就是傳入的normalized_shape。

eps

歸一化時加在分母上防止除零。

elementwise_affine

如果設為False,則LayerNorm層不含有任何可學習參數(shù)。

如果設為True(默認是True)則會包含可學習參數(shù)weight和bias,用于仿射變換,即對輸入數(shù)據(jù)歸一化到均值0方差1后,乘以weight,即bias。

LayerNorm前向傳播(以normalized_shape為一個int舉例)

1、如下所示輸入數(shù)據(jù)的shape是(3, 4),此時normalized_shape傳入4(輸入維度最后一維的size),則沿著最后一維(沿著最后一維的意思就是對最后一維的數(shù)據(jù)進行操作)并用這兩個結(jié)果把batch沿著最后一維歸一化,使其均值為0,方差為1。歸一化公式用到了eps(),即

tensor = torch.FloatTensor([[1, 2, 4, 1],
                            [6, 3, 2, 4],
                            [2, 4, 6, 1]])

[[-0.8165,  0.0000,  1.6330, -0.8165],
 [ 1.5213, -0.5071, -1.1832,  0.1690],
 [-0.6509,  0.3906,  1.4321, -1.1717]]

2、如果elementwise_affine==True,則對歸一化后的batch進行仿射變換,即乘以模塊內(nèi)部的weight(初值是[1., 1., 1., 1.])然后加上模塊內(nèi)部的bias(初值是[0., 0., 0., 0.]),這兩個變量會在反向傳播時得到更新。

3、如果elementwise_affine==False,則LayerNorm中不含有weight和bias兩個變量,只做歸一化,不會進行仿射變換。

總結(jié)

在使用LayerNorm時,通常只需要指定normalized_shape就可以了。

補充:【Pytorch】F.layer_norm和nn.LayerNorm到底有什么區(qū)別?

背景

最近在做視頻方向,處理的是時序特征,就想著能不能用Batch Normalization來做視頻特征BN層?在網(wǎng)上查閱資料發(fā)現(xiàn),時序特征并不能用Batch Normalization,因為一個batch中的序列有長有短。

此外,BN 的一個缺點是需要較大的 batchsize 才能合理估訓練數(shù)據(jù)的均值和方差,這導致內(nèi)存很可能不夠用,同時它也很難應用在訓練數(shù)據(jù)長度不同的 RNN 模型上。

Layer Normalization (LN) 的一個優(yōu)勢是不需要批訓練,在單條數(shù)據(jù)內(nèi)部就能歸一化。

對于RNN等時序模型,有時候同一個batch內(nèi)部的訓練實例長度不一(不同長度的句子),則不同的時態(tài)下需要保存不同的統(tǒng)計量,無法正確使用BN層,只能使用Layer Normalization。

查閱Layer Normalization(下述LN)后發(fā)現(xiàn),這東西有兩種用法,一個是F.layer_norm,一個是torch.nn.LayerNorm,本文探究他們的區(qū)別。

F.layer_norm

用法

F.layer_norm(x, normalized_shape, self.weight.expand(normalized_shape), self.bias.expand(normalized_shape))

其中:

x是輸入的Tensor

normalized_shape是要歸一化的維度,可以是x的后若干維度

self.weight.expand(normalized_shape),可選參數(shù),自定義的weight

self.bias.expand(normalized_shape),可選參數(shù),自定義的bias

示例

很容易看出來,跟F.normalize基本一樣,沒有可學習的參數(shù),或者自定義參數(shù)。具體使用示例如下:

import torch.nn.functional as F
 
input = torch.tensor(a)
y = F.layer_norm(input,(4,))
print(y)
 
#####################輸出################
tensor([[[-0.8095, -1.1224,  1.2966,  0.6354],
         [-1.0215, -0.9661,  0.8387,  1.1488],
         [-0.3047,  1.0412, -1.4978,  0.7613]],
 
        [[ 0.4605,  1.2144, -1.5122, -0.1627],
         [ 1.5676,  0.1340, -1.0471, -0.6545],
         [ 1.5388, -0.3520, -1.2273,  0.0405]]])

添加縮放:

w = torch.tensor([1,1,2,2])
b = torch.tensor([1,1,1,1])
y = F.layer_norm(input,(4,),w,b)
print(y)
 
#########################輸出######################
tensor([[[ 0.1905, -0.1224,  3.5931,  2.2708],
         [-0.0215,  0.0339,  2.6775,  3.2976],
         [ 0.6953,  2.0412, -1.9956,  2.5225]],
 
        [[ 1.4605,  2.2144, -2.0243,  0.6746],
         [ 2.5676,  1.1340, -1.0942, -0.3090],
         [ 2.5388,  0.6480, -1.4546,  1.0810]]])

nn.LayerNorm

用法

torch.nn.LayerNorm(
        normalized_shape: Union[int, List[int], torch.Size],
        eps: float = 1e-05,
        elementwise_affine: bool = True)

normalized_shape: 輸入尺寸, [∗×normalized_shape[0]×normalized_shape[1]×…×normalized_shape[−1]]

eps: 為保證數(shù)值穩(wěn)定性(分母不能趨近或取0),給分母加上的值。默認為1e-5。

elementwise_affine: 布爾值,當設為true,給該層添加可學習的仿射變換參數(shù)。

示例

elementwise_affine如果設為False,則LayerNorm層不含有任何可學習參數(shù)。

如果設為True(默認是True)則會包含可學習參數(shù)weight和bias,用于仿射變換,即對輸入數(shù)據(jù)歸一化到均值0方差1后,乘以weight,即bias。

import torch
input = torch.randn(2,3,2,2)
import torch.nn as nn
#取消仿射變換要寫成
#m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
m1 = nn.LayerNorm(input.size()[1:])#input.size()[1:]為torch.Size([3, 2, 2])
output1 = m1(input)
#只normalize后兩個維度
m2 = nn.LayerNorm([2,2])
output2 = m2(input)
#只normalize最后一個維度
m3 = nn.LayerNorm(2)
output3 = m3(input)

總結(jié)

F.layer_norm中沒有可學習參數(shù),而nn.LayerNorm有可學習參數(shù)。當elementwise_affine設為False時,nn.LayerNorm退化為F.layer_norm。

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • pytorch固定BN層參數(shù)的操作
  • pytorch 如何自定義卷積核權(quán)值參數(shù)
  • pytorch交叉熵損失函數(shù)的weight參數(shù)的使用
  • Pytorch 統(tǒng)計模型參數(shù)量的操作 param.numel()
  • pytorch 一行代碼查看網(wǎng)絡參數(shù)總量的實現(xiàn)
  • pytorch查看網(wǎng)絡參數(shù)顯存占用量等操作
  • pytorch 優(yōu)化器(optim)不同參數(shù)組,不同學習率設置的操作

標簽:成都 山東 江蘇 蘭州 宿遷 駐馬店 常州 六盤水

巨人網(wǎng)絡通訊聲明:本文標題《pytorch LayerNorm參數(shù)的用法及計算過程》,本文關(guān)鍵詞  pytorch,LayerNorm,參數(shù),的,用法,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《pytorch LayerNorm參數(shù)的用法及計算過程》相關(guān)的同類信息!
  • 本頁收集關(guān)于pytorch LayerNorm參數(shù)的用法及計算過程的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    免费的黄视频| 韩国三级香港三级日本三级| 亚洲精品影院| 二级片在线观看| 一级毛片视频播放| 国产一区二区精品久久91| 久久99中文字幕| 国产网站免费| 日本特黄特色aaa大片免费| 精品视频免费在线| 一级女性全黄久久生活片| 午夜久久网| 日本免费看视频| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 一级片免费在线观看视频| 成人高清视频免费观看| 黄视频网站在线免费观看| 香蕉视频久久| 日韩综合| 成人免费网站视频ww| 一级毛片视频在线观看| 日韩中文字幕在线亚洲一区| 精品视频在线看 | 欧美a级片免费看| 国产成人女人在线视频观看| 精品国产一区二区三区久久久蜜臀 | 国产国产人免费视频成69堂| 国产伦精品一区三区视频| 久久成人综合网| 亚洲精品影院久久久久久| 麻豆网站在线看| 天天做日日干| 国产成人精品综合久久久| 国产精品免费精品自在线观看| 国产美女在线一区二区三区| 成人在免费观看视频国产| 久久国产一久久高清| 毛片高清| 欧美大片一区| 毛片的网站| 二级片在线观看| 国产不卡福利| 精品视频免费观看| 精品视频在线观看一区二区| 精品国产三级a| 精品在线观看国产| 在线观看成人网| 欧美激情一区二区三区视频高清 | 亚洲不卡一区二区三区在线| 欧美大片a一级毛片视频| 黄视频网站免费看| 成人免费观看的视频黄页| 免费一级片网站| 99色视频在线观看| 一本高清在线| 日本伦理黄色大片在线观看网站| 久久成人综合网| 欧美日本国产| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 一本伊大人香蕉高清在线观看| 久久国产影视免费精品| 国产麻豆精品hdvideoss| 国产不卡精品一区二区三区| 二级特黄绝大片免费视频大片| 毛片的网站| 天天色成人网| 美女被草网站| 可以免费看毛片的网站| 国产视频一区二区在线播放| 国产不卡在线看| 麻豆网站在线看| 九九九网站| 国产国语对白一级毛片| 欧美激情一区二区三区在线| 欧美激情一区二区三区视频| 欧美激情伊人| 在线观看导航| 一级毛片视频在线观看| 久久国产精品自线拍免费| 一级片免费在线观看视频| 久久久久久久网| 亚洲精品影院| 九九九国产| 美女免费精品视频在线观看| 免费一级片在线| 午夜欧美成人久久久久久| 欧美日本免费| 欧美大片a一级毛片视频| 国产一区二区福利久久| 欧美α片无限看在线观看免费| 精品国产一区二区三区久久久狼| 精品视频在线观看一区二区三区| 国产一区免费观看| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 午夜激情视频在线观看| 韩国三级视频网站| 日韩一级黄色片| 久久99青青久久99久久| 深夜做爰性大片中文| 欧美大片aaaa一级毛片| 精品久久久久久综合网| 精品在线观看一区| 韩国三级视频网站| 国产一区二区精品久| 日韩女人做爰大片| 久久99青青久久99久久| 一级毛片视频免费| 香蕉视频久久| 九九久久国产精品大片| 精品国产香蕉在线播出| 99久久精品国产麻豆| 精品视频免费在线| 美女免费精品高清毛片在线视| 香蕉视频久久| 黄视频网站在线免费观看| 国产一区二区精品在线观看| 亚洲精品久久玖玖玖玖| 免费一级片网站| 欧美国产日韩精品| 久久国产精品自由自在| 国产国产人免费视频成69堂| 国产一级生活片| 人人干人人插| 九九九网站| 欧美a级成人淫片免费看| 欧美日本免费| 99久久网站| 天天色成人网| 亚飞与亚基在线观看| 麻豆网站在线看| 二级片在线观看| 999久久久免费精品国产牛牛| 天天色色网| a级毛片免费观看网站| 可以在线看黄的网站| 99色视频在线观看| 日本伦理网站| 999精品在线| 韩国三级视频网站| 精品国产一级毛片| 国产国语在线播放视频| 精品视频免费看| 高清一级毛片一本到免费观看| 人人干人人插| 超级乱淫伦动漫| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 国产伦理精品| 欧美爱爱动态| 香蕉视频一级| 国产一区二区精品久久| 精品国产亚一区二区三区| 天天做人人爱夜夜爽2020| 亚欧视频在线| 国产一区二区高清视频| 色综合久久久久综合体桃花网| 999精品影视在线观看| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 国产成人啪精品| 四虎影视久久久| 亚洲女初尝黑人巨高清在线观看| 久久99爰这里有精品国产| 欧美爱色| 国产国语对白一级毛片| 天天色成人网| 午夜在线亚洲| 精品国产一区二区三区免费| 日本免费看视频| 99色视频| 免费国产在线视频| 久久99中文字幕| 欧美激情伊人| 欧美日本免费| 99久久精品国产国产毛片| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 国产精品12| 四虎久久精品国产| 国产亚洲免费观看| 久久精品店| 天天色色网| 欧美一级视频高清片| 日本在线不卡视频| 精品国产一区二区三区精东影业| 亚洲精品久久久中文字| 日韩女人做爰大片| 日韩中文字幕一区二区不卡| 久久99爰这里有精品国产| 精品视频在线观看一区二区| 999久久久免费精品国产牛牛| 欧美一级视| 国产伦久视频免费观看视频| 麻豆午夜视频| 一级毛片视频免费| 精品视频在线观看视频免费视频 | 99久久视频| 国产麻豆精品hdvideoss| 久久99爰这里有精品国产| 色综合久久天天综线观看| 九九久久国产精品大片| 99色视频在线| 国产网站在线|