亚洲综合原千岁中文字幕_国产精品99久久久久久久vr_无码人妻aⅴ一区二区三区浪潮_成人h动漫精品一区二区三

主頁 > 知識庫 > pytorch Variable與Tensor合并后 requires_grad()默認(rèn)與修改方式

pytorch Variable與Tensor合并后 requires_grad()默認(rèn)與修改方式

熱門標(biāo)簽:陜西金融外呼系統(tǒng) 激戰(zhàn)2地圖標(biāo)注 白銀外呼系統(tǒng) 騰訊外呼線路 哈爾濱ai外呼系統(tǒng)定制 公司電話機器人 唐山智能外呼系統(tǒng)一般多少錢 海南400電話如何申請 廣告地圖標(biāo)注app

pytorch更新完后合并了Variable與Tensor

torch.Tensor()能像Variable一樣進(jìn)行反向傳播的更新,返回值為Tensor

Variable自動創(chuàng)建tensor,且返回值為Tensor,(所以以后不需要再用Variable)

Tensor創(chuàng)建后,默認(rèn)requires_grad=Flase

可以通過xxx.requires_grad_()將默認(rèn)的Flase修改為True

下面附代碼及官方文檔代碼:

import torch
from torch.autograd import Variable #使用Variabl必須調(diào)用庫
lis=torch.range(1,6).reshape((-1,3))#創(chuàng)建1~6 形狀 
#行不指定(-1意為由計算機自己計算)列為3的floattensor矩陣

print(lis)
print(lis.requires_grad) #查看默認(rèn)的requires_grad是否是Flase

lis.requires_grad_() #使用.requires_grad_()修改默認(rèn)requires_grad為true
print(lis.requires_grad)

結(jié)果如下:

tensor([[1., 2., 3.],
[4., 5., 6.]])
False
True

創(chuàng)建一個Variable,Variable必須接收Tensor數(shù)據(jù) 不能直接寫為 a=Variable(range(6)).reshape((-1,3))

否則報錯 Variable data has to be a tensor, but got range

正確如下:

import torch
from torch.autograd import Variable
tensor=torch.FloatTensor(range(8)).reshape((-1,4))
my_ten=Variable(tensor)
print(my_ten)
print(my_ten.requires_grad)

my_ten.requires_grad_()
print(my_ten.requires_grad)

結(jié)果:

tensor([[0., 1., 2., 3.],
[4., 5., 6., 7.]])
False
True

由上面可以看出,Tensor完全可以取代Variable。

下面給出官方文檔:

# 默認(rèn)創(chuàng)建requires_grad = False的Tensor  
x = torch . ones ( 1 ) # create a tensor with requires_grad=False (default)
x . requires_grad
# out: False

# 創(chuàng)建另一個Tensor,同樣requires_grad = False
y = torch . ones ( 1 ) # another tensor with requires_grad=False
# both inputs have requires_grad=False. so does the output
z = x + y
# 因為兩個Tensor x,y,requires_grad=False.都無法實現(xiàn)自動微分,
# 所以操作(operation)z=x+y后的z也是無法自動微分,requires_grad=False
z . requires_grad
# out: False

# then autograd won't track this computation. let's verify!
# 因而無法autograd,程序報錯
z . backward ( ) 
# out:程序報錯:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

# now create a tensor with requires_grad=True
w = torch . ones ( 1 , requires_grad = True ) 
w . requires_grad
# out: True

# add to the previous result that has require_grad=False
# 因為total的操作中輸入Tensor w的requires_grad=True,因而操作可以進(jìn)行反向傳播和自動求導(dǎo)。
total = w + z
# the total sum now requires grad!
total . requires_grad
# out: True
# autograd can compute the gradients as well
total . backward ( ) 
w . grad
#out: tensor([ 1.])

# and no computation is wasted to compute gradients for x, y and z, which don't require grad
# 由于z,x,y的requires_grad=False,所以并沒有計算三者的梯度
z . grad == x . grad == y . grad == None 
# True
existing_tensor . requires_grad_ ( ) 
existing_tensor . requires_grad
# out:True

或者直接用Tensor創(chuàng)建時給定requires_grad=True

my_tensor = torch.zeros(3,4,requires_grad = True) 
my_tensor.requires_grad
# out: True
lis=torch.range(1,6,requires_grad=True).reshape((-1,3))
print(lis)
print(lis.requires_grad)
lis.requires_grad_()
print(lis.requires_grad)

結(jié)果

tensor([[1., 2., 3.],
[4., 5., 6.]], requires_grad=True)
True
True

補充:volatile 和 requires_grad在pytorch中的意思

Backward過程中排除子圖

pytorch的BP過程是由一個函數(shù)決定的,loss.backward(), 可以看到backward()函數(shù)里并沒有傳要求誰的梯度。那么我們可以大膽猜測,在BP的過程中,pytorch是將所有影響loss的Variable都求了一次梯度。

但是有時候,我們并不想求所有Variable的梯度。那就要考慮如何在Backward過程中排除子圖(ie.排除沒必要的梯度計算)。

如何BP過程中排除子圖? Variable的兩個參數(shù)(requires_grad和volatile)

requires_grad=True 要求梯度

requires_grad=False 不要求梯度

volatile=True相當(dāng)于requires_grad=False。反之則反之。。。。。。。ok

注意:如果a是requires_grad=True,b是requires_grad=False。則c=a+b是requires_grad=True。同樣的道理應(yīng)用于volatile

為什么要排除子圖

也許有人會問,梯度全部計算,不更新的話不就得了。

這樣就涉及了效率的問題了,計算很多沒用的梯度是浪費了很多資源的(時間,計算機內(nèi)存)

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • pytorch dataloader 取batch_size時候出現(xiàn)bug的解決方式
  • pytorch的batch normalize使用詳解
  • pytorch方法測試詳解——歸一化(BatchNorm2d)
  • 解決pytorch下只打印tensor的數(shù)值不打印出device等信息的問題
  • 淺談pytorch中stack和cat的及to_tensor的坑
  • Pytorch中TensorBoard及torchsummary的使用詳解
  • pytorch 帶batch的tensor類型圖像顯示操作

標(biāo)簽:黔西 上海 四川 惠州 鷹潭 常德 益陽 黑龍江

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《pytorch Variable與Tensor合并后 requires_grad()默認(rèn)與修改方式》,本文關(guān)鍵詞  pytorch,Variable,與,Tensor,合并,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《pytorch Variable與Tensor合并后 requires_grad()默認(rèn)與修改方式》相關(guān)的同類信息!
  • 本頁收集關(guān)于pytorch Variable與Tensor合并后 requires_grad()默認(rèn)與修改方式的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    韩国毛片免费大片| 青青青草影院 | 国产激情视频在线观看| 国产一区免费在线观看| 二级片在线观看| 欧美激情一区二区三区在线播放| 欧美日本免费| 台湾毛片| 国产一区二区精品| 999久久久免费精品国产牛牛| 亚州视频一区二区| 亚洲 欧美 成人日韩| 日韩中文字幕一区二区不卡| 日韩专区在线播放| 麻豆午夜视频| 九九干| 久久99中文字幕| 国产一区二区高清视频| 99久久精品国产免费| 精品视频在线观看视频免费视频 | 国产高清在线精品一区二区 | 一本伊大人香蕉高清在线观看| 91麻豆爱豆果冻天美星空| 色综合久久久久综合体桃花网| 精品国产三级a| 精品国产一级毛片| 免费毛片播放| 青草国产在线| 亚洲天堂一区二区三区四区| 日韩免费片| 成人在免费观看视频国产| 九九热精品免费观看| 成人av在线播放| 国产不卡高清在线观看视频| 午夜在线观看视频免费 成人| 精品国产三级a| 国产国产人免费视频成69堂| 国产麻豆精品hdvideoss| 亚洲女初尝黑人巨高清在线观看| 天天做人人爱夜夜爽2020毛片| 免费的黄色小视频| 青青久久精品国产免费看| 成人免费观看的视频黄页| 免费毛片播放| 韩国毛片 免费| 九九九国产| 久久精品免视看国产成人2021| 国产福利免费视频| 成人a大片在线观看| 91麻豆精品国产自产在线 | 日本伦理黄色大片在线观看网站| 欧美日本免费| 欧美另类videosbestsex视频 | 国产一区二区精品久久91| 99久久网站| 天堂网中文字幕| 亚洲 欧美 成人日韩| 美女免费精品高清毛片在线视| 成人免费一级纶理片| 亚洲精品影院一区二区| 欧美1区| 精品视频免费观看| 亚洲精品影院| 天天色色网| 日日爽天天| 成人免费网站久久久| 天天做日日爱夜夜爽| 91麻豆精品国产片在线观看| 亚洲精品中文字幕久久久久久| 精品久久久久久中文字幕一区| 999久久久免费精品国产牛牛| 国产国产人免费视频成69堂| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 成人免费观看视频| 欧美激情一区二区三区在线播放| 91麻豆爱豆果冻天美星空| a级毛片免费全部播放| 成人免费福利片在线观看| 精品久久久久久中文| 青青青草影院 | 国产国语在线播放视频| 国产成人精品一区二区视频| 91麻豆精品国产自产在线 | 日韩一级黄色大片| 国产一区免费在线观看| 韩国毛片 免费| 国产a免费观看| 欧美1区| 日韩免费在线视频| 亚欧成人乱码一区二区| 尤物视频网站在线观看| 成人影视在线播放| 国产91丝袜高跟系列| 精品视频一区二区三区免费| 久久久久久久免费视频| 精品久久久久久免费影院| 九九久久99综合一区二区| 国产精品自拍亚洲| 999久久久免费精品国产牛牛| 精品视频免费观看| 999久久久免费精品国产牛牛| 日韩女人做爰大片| 国产国语在线播放视频| 精品国产香蕉在线播出 | 日日爽天天| 青青久久精品国产免费看| 日韩在线观看视频免费| 91麻豆爱豆果冻天美星空| 国产激情视频在线观看| 日本特黄特黄aaaaa大片| 中文字幕一区二区三区 精品| 韩国毛片免费大片| 国产美女在线一区二区三区| 99色吧| 青青青草影院 | 国产精品1024永久免费视频 | 国产美女在线观看| 午夜家庭影院| 亚洲 欧美 成人日韩| 国产国语在线播放视频| 国产一级生活片| 国产网站免费在线观看| 日本免费看视频| 日本免费乱人伦在线观看 | 日本特黄特色aa大片免费| 青青青草影院 | 久久久久久久免费视频| 美国一区二区三区| 国产91丝袜高跟系列| 精品视频一区二区三区免费| 国产伦精品一区二区三区在线观看| 黄视频网站在线观看| 国产成人精品一区二区视频| 日韩免费在线视频| 精品视频在线观看视频免费视频 | 高清一级片| 麻豆系列国产剧在线观看| 精品国产一级毛片| 成人高清视频免费观看| 日本免费看视频| 美国一区二区三区| 国产精品12| 亚欧乱色一区二区三区| 久久国产精品自由自在| 国产亚洲精品aaa大片| 日韩免费片| 美国一区二区三区| 国产视频久久久久| 麻豆系列国产剧在线观看| 麻豆系列国产剧在线观看| 九九精品影院| 免费一级片网站| 台湾毛片| 久久精品免视看国产成人2021| 精品视频免费在线| 一本伊大人香蕉高清在线观看| 你懂的在线观看视频| 国产伦久视频免费观看视频| 久久99中文字幕| 99热视热频这里只有精品| 欧美日本免费| 午夜久久网| 韩国毛片免费大片| 天天色成人| 久久成人亚洲| 欧美一区二区三区性| 欧美另类videosbestsex| 一本伊大人香蕉高清在线观看| 日韩欧美一及在线播放| 精品国产亚一区二区三区| 日韩免费在线视频| 成人免费福利片在线观看| 91麻豆精品国产片在线观看| 99久久精品费精品国产一区二区| 国产激情视频在线观看| 青青青草影院 | 欧美爱色| 日韩免费在线视频| 天堂网中文字幕| 国产一区二区高清视频| 国产激情视频在线观看| 青青青草影院 | 免费一级生活片| 欧美激情伊人| 欧美一级视| 999久久66久6只有精品| 国产一区二区精品在线观看| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 精品久久久久久中文| 精品视频在线看 | 天天色成人| 国产伦精品一区二区三区在线观看| 日本免费看视频| 精品国产一级毛片| 青青青草影院 | 99久久精品国产免费| 黄色免费三级| 青青久久精品国产免费看| 亚洲精品影院| 一级毛片视频免费|