亚洲综合原千岁中文字幕_国产精品99久久久久久久vr_无码人妻aⅴ一区二区三区浪潮_成人h动漫精品一区二区三

主頁 > 知識庫 > pytorch_detach 切斷網絡反傳方式

pytorch_detach 切斷網絡反傳方式

熱門標簽:騰訊外呼線路 陜西金融外呼系統 海南400電話如何申請 激戰2地圖標注 公司電話機器人 唐山智能外呼系統一般多少錢 哈爾濱ai外呼系統定制 廣告地圖標注app 白銀外呼系統

detach

官方文檔中,對這個方法是這么介紹的。

    detach = _add_docstr(_C._TensorBase.detach, r"""
    Returns a new Tensor, detached from the current graph.
    The result will never require gradient.
    .. note::
      Returned Tensor uses the same data tensor as the original one.
      In-place modifications on either of them will be seen, and may trigger
      errors in correctness checks.
    """)

返回一個新的從當前圖中分離的 Variable。

返回的 Variable 永遠不會需要梯度

如果 被 detach 的Variable volatile=True, 那么 detach 出來的 volatile 也為 True

還有一個注意事項,即:返回的 Variable 和 被 detach 的Variable 指向同一個 tensor

import torch
from torch.nn import init
t1 = torch.tensor([1., 2.],requires_grad=True)
t2 = torch.tensor([2., 3.],requires_grad=True)
v3 = t1 + t2
v3_detached = v3.detach()
v3_detached.data.add_(t1) # 修改了 v3_detached Variable中 tensor 的值
print(v3, v3_detached)    # v3 中tensor 的值也會改變
print(v3.requires_grad,v3_detached.requires_grad)
'''
tensor([4., 7.], grad_fn=AddBackward0>) tensor([4., 7.])
True False
'''

在pytorch中通過拷貝需要切斷位置前的tensor實現這個功能。tensor中拷貝的函數有兩個,一個是clone(),另外一個是copy_(),clone()相當于完全復制了之前的tensor,他的梯度也會復制,而且在反向傳播時,克隆的樣本和結果是等價的,可以簡單的理解為clone只是給了同一個tensor不同的代號,和‘='等價。所以如果想要生成一個新的分開的tensor,請使用copy_()。

不過對于這樣的操作,pytorch中有專門的函數——detach()。

用戶自己創建的節點是leaf_node(如圖中的abc三個節點),不依賴于其他變量,對于leaf_node不能進行in_place操作.根節點是計算圖的最終目標(如圖y),通過鏈式法則可以計算出所有節點相對于根節點的梯度值.這一過程通過調用root.backward()就可以實現.

因此,detach所做的就是,重新聲明一個變量,指向原變量的存放位置,但是requires_grad為false.更深入一點的理解是,計算圖從detach過的變量這里就斷了, 它變成了一個leaf_node.即使之后重新將它的requires_node置為true,它也不會具有梯度.

pytorch 梯度

(0.4之后),tensor和variable合并,tensor具有grad、grad_fn等屬性;

默認創建的tensor,grad默認為False, 如果當前tensor_grad為None,則不會向前傳播,如果有其它支路具有grad,則只傳播其它支路的grad

# 默認創建requires_grad = False的Tensor
x = torch.ones(1)   # create a tensor with requires_grad=False (default)
print(x.requires_grad)
 # out: False
 
 # 創建另一個Tensor,同樣requires_grad = False
y = torch.ones(1)  # another tensor with requires_grad=False
 # both inputs have requires_grad=False. so does the output
z = x + y
 # 因為兩個Tensor x,y,requires_grad=False.都無法實現自動微分,
 # 所以操作(operation)z=x+y后的z也是無法自動微分,requires_grad=False
print(z.requires_grad)
 # out: False
 
 # then autograd won't track this computation. let's verify!
 # 因而無法autograd,程序報錯
# z.backward()
 # out:程序報錯:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
    
# now create a tensor with requires_grad=True
w = torch.ones(1, requires_grad=True)
print(w.requires_grad)
 # out: True
 
 # add to the previous result that has require_grad=False
 # 因為total的操作中輸入Tensor w的requires_grad=True,因而操作可以進行反向傳播和自動求導。
total = w + z
# the total sum now requires grad!
total.requires_grad
# out: True
# autograd can compute the gradients as well
total.backward()
print(w.grad)
#out: tensor([ 1.])
# and no computation is wasted to compute gradients for x, y and z, which don't require grad
# 由于z,x,y的requires_grad=False,所以并沒有計算三者的梯度
z.grad == x.grad == y.grad == None
# True

nn.Paramter

import torch.nn.functional as F
# With square kernels and equal stride
filters = torch.randn(8,4,3,3)
weiths = torch.nn.Parameter(torch.randn(8,4,3,3))
inputs = torch.randn(1,4,5,5)
out = F.conv2d(inputs, weiths, stride=2,padding=1)
print(out.shape)
con2d = torch.nn.Conv2d(4,8,3,stride=2,padding=1)
out_2 = con2d(inputs)
print(out_2.shape)

補充:Pytorch-detach()用法

目的:

神經網絡的訓練有時候可能希望保持一部分的網絡參數不變,只對其中一部分的參數進行調整。

或者訓練部分分支網絡,并不讓其梯度對主網絡的梯度造成影響.這時候我們就需要使用detach()函數來切斷一些分支的反向傳播.

1 tensor.detach()

返回一個新的tensor,從當前計算圖中分離下來。但是仍指向原變量的存放位置,不同之處只是requirse_grad為false.得到的這個tensir永遠不需要計算器梯度,不具有grad.

即使之后重新將它的requires_grad置為true,它也不會具有梯度grad.這樣我們就會繼續使用這個新的tensor進行計算,后面當我們進行反向傳播時,到該調用detach()的tensor就會停止,不能再繼續向前進行傳播.

注意:

使用detach返回的tensor和原始的tensor共同一個內存,即一個修改另一個也會跟著改變。

比如正常的例子是:

import torch 
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a)
print(a.grad)
out = a.sigmoid()
 
out.sum().backward()
print(a.grad)

輸出

tensor([1., 2., 3.], requires_grad=True)

None

tensor([0.1966, 0.1050, 0.0452])

1.1 當使用detach()分離tensor但是沒有更改這個tensor時,并不會影響backward():

import torch 
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
 
#添加detach(),c的requires_grad為False
c = out.detach()
print(c)
 
#這時候沒有對c進行更改,所以并不會影響backward()
out.sum().backward()
print(a.grad)
 
'''返回:
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
'''

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • pytorch 禁止/允許計算局部梯度的操作
  • 如何利用Pytorch計算三角函數
  • 聊聊PyTorch中eval和no_grad的關系
  • Pytorch實現圖像識別之數字識別(附詳細注釋)
  • Pytorch實現全連接層的操作
  • pytorch 優化器(optim)不同參數組,不同學習率設置的操作
  • PyTorch 如何將CIFAR100數據按類標歸類保存
  • PyTorch的Debug指南
  • Python深度學習之使用Pytorch搭建ShuffleNetv2
  • win10系統配置GPU版本Pytorch的詳細教程
  • 淺談pytorch中的nn.Sequential(*net[3: 5])是啥意思
  • pytorch visdom安裝開啟及使用方法
  • PyTorch CUDA環境配置及安裝的步驟(圖文教程)
  • pytorch中的nn.ZeroPad2d()零填充函數實例詳解
  • 使用pytorch實現線性回歸
  • pytorch實現線性回歸以及多元回歸
  • PyTorch學習之軟件準備與基本操作總結

標簽:惠州 益陽 鷹潭 常德 黑龍江 黔西 四川 上海

巨人網絡通訊聲明:本文標題《pytorch_detach 切斷網絡反傳方式》,本文關鍵詞  pytorch,detach,切斷,網絡,反傳,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pytorch_detach 切斷網絡反傳方式》相關的同類信息!
  • 本頁收集關于pytorch_detach 切斷網絡反傳方式的相關信息資訊供網民參考!
  • 推薦文章
    黄色福利| 国产伦精品一区二区三区无广告| 99热精品在线| 夜夜操天天爽| 成人在免费观看视频国产| 日本伦理片网站| 日韩专区在线播放| 尤物视频网站在线| 国产成a人片在线观看视频| 一级毛片视频播放| 久久成人亚洲| 99久久精品费精品国产一区二区| 九九干| 香蕉视频久久| 可以免费在线看黄的网站| 午夜久久网| 国产高清在线精品一区a| 99久久精品费精品国产一区二区| 美女免费精品视频在线观看| 毛片高清| 欧美爱色| 成人影视在线观看| 色综合久久天天综线观看 | 夜夜操天天爽| 欧美电影免费| 成人影视在线观看| 美女免费精品视频在线观看| 免费国产在线观看| 999久久狠狠免费精品| 黄视频网站免费| 九九久久99| 国产精品自拍在线观看| 黄视频网站免费观看| 美女免费黄网站| 日韩在线观看视频免费| 91麻豆精品国产高清在线| 欧美另类videosbestsex高清| 黄视频网站免费观看| 国产网站在线| 四虎影视库| 欧美1区2区3区| 精品国产一区二区三区国产馆| 韩国三级一区| 久久精品欧美一区二区| 成人免费一级毛片在线播放视频| 欧美日本免费| 亚飞与亚基在线观看| 欧美另类videosbestsex高清 | 二级特黄绝大片免费视频大片| 亚洲第一色在线| 国产综合成人观看在线| 韩国毛片免费大片| | 尤物视频网站在线| 国产麻豆精品hdvideoss| 国产a毛片| 色综合久久天天综合观看| 美女免费精品视频在线观看| 高清一级片| 国产精品自拍一区| 欧美日本二区| 夜夜操网| 国产精品免费精品自在线观看| 成人影院一区二区三区| 日韩专区第一页| 亚洲第一色在线| 九九九国产| 中文字幕一区二区三区 精品| 美女免费毛片| 成人高清护士在线播放| 欧美激情一区二区三区视频高清 | 超级乱淫伦动漫| 黄视频网站在线看| 日韩av片免费播放| 国产一区二区精品久久| 国产一区二区精品| 色综合久久手机在线| 成人a级高清视频在线观看| 国产高清视频免费| 国产精品免费久久| 99热精品一区| 毛片成人永久免费视频| 一级女性全黄生活片免费| 韩国三级视频在线观看| 九九精品影院| 精品国产香蕉在线播出| 久久99中文字幕久久| 欧美一级视| 午夜激情视频在线观看| 亚洲女初尝黑人巨高清在线观看| 免费国产在线视频| 精品视频一区二区| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 精品视频在线观看免费| 日韩专区在线播放| 国产网站免费| 国产亚洲精品aaa大片| 国产一区二区福利久久| 麻豆午夜视频| 尤物视频网站在线| 麻豆午夜视频| 亚洲爆爽| 免费的黄视频| 香蕉视频久久| 久久精品人人做人人爽97| 999久久狠狠免费精品| 精品视频在线观看一区二区| 精品国产亚一区二区三区| 日本在线播放一区| 香蕉视频亚洲一级| 成人高清视频免费观看| 国产a视频| 成人免费高清视频| 91麻豆精品国产综合久久久| 日韩一级黄色片| 日韩专区亚洲综合久久| 四虎久久精品国产| 日韩在线观看视频网站| 可以免费看污视频的网站| 一 级 黄 中国色 片| 国产不卡精品一区二区三区| 四虎久久影院| 麻豆系列 在线视频| 日韩欧美一二三区| 久久精品免视看国产成人2021| 国产视频在线免费观看| 青青青草影院| 欧美另类videosbestsex久久| 你懂的国产精品| 亚洲天堂免费观看| 国产麻豆精品免费视频| 欧美电影免费看大全| 国产成人精品综合在线| 日韩在线观看视频黄| 日韩在线观看网站| 韩国毛片基地| 欧美国产日韩一区二区三区| 国产亚洲精品成人a在线| 一级毛片视频免费| 国产伦久视频免费观看视频| 欧美激情伊人| 国产伦精品一区二区三区无广告 | 日韩在线观看视频黄| 国产高清视频免费| 欧美日本二区| 二级片在线观看| 国产不卡在线观看视频| 成人a大片在线观看| 色综合久久天天综合观看| 免费一级生活片| 久久精品成人一区二区三区| 日韩在线观看免费| 国产美女在线观看| 日韩中文字幕一区| 美国一区二区三区| 韩国三级香港三级日本三级la | 亚欧乱色一区二区三区| 99久久网站| 日本伦理片网站| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 一级毛片看真人在线视频| 日韩在线观看免费完整版视频| 日本免费乱人伦在线观看| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 亚飞与亚基在线观看| 国产91丝袜在线播放0| 日日爽天天| 成人免费高清视频| 午夜家庭影院| 99热视热频这里只有精品| 午夜欧美成人久久久久久| 亚洲女初尝黑人巨高清在线观看| 美国一区二区三区| 日本在线不卡免费视频一区| 日韩一级黄色片| 久久久久久久免费视频| 麻豆网站在线看| 99久久精品费精品国产一区二区| 美女免费毛片| 黄视频网站免费看| 91麻豆精品国产综合久久久| 九九久久国产精品| 欧美日本免费| 一级女性大黄生活片免费| 高清一级片| 精品久久久久久免费影院| 成人免费网站久久久| 国产a一级| 国产91丝袜高跟系列| 国产成人精品综合久久久| 国产成人精品综合| 国产一区精品| 天堂网中文字幕| 日韩综合| 国产福利免费视频| 国产91丝袜高跟系列| 国产福利免费观看| 国产91精品一区二区| 亚飞与亚基在线观看| 国产伦理精品|