亚洲综合原千岁中文字幕_国产精品99久久久久久久vr_无码人妻aⅴ一区二区三区浪潮_成人h动漫精品一区二区三

主頁(yè) > 知識(shí)庫(kù) > Python實(shí)現(xiàn)8種常用抽樣方法

Python實(shí)現(xiàn)8種常用抽樣方法

熱門(mén)標(biāo)簽:長(zhǎng)春極信防封電銷(xiāo)卡批發(fā) 如何地圖標(biāo)注公司 外賣(mài)地址有什么地圖標(biāo)注 電銷(xiāo)機(jī)器人錄音要學(xué)習(xí)什么 上海正規(guī)的外呼系統(tǒng)最新報(bào)價(jià) 企業(yè)彩鈴地圖標(biāo)注 煙臺(tái)電話外呼營(yíng)銷(xiāo)系統(tǒng) 預(yù)覽式外呼系統(tǒng) 銀川電話機(jī)器人電話

今天來(lái)和大家聊聊抽樣的幾種常用方法,以及在Python中是如何實(shí)現(xiàn)的。

抽樣是統(tǒng)計(jì)學(xué)、機(jī)器學(xué)習(xí)中非常重要,也是經(jīng)常用到的方法,因?yàn)榇蠖鄷r(shí)候使用全量數(shù)據(jù)是不現(xiàn)實(shí)的,或者根本無(wú)法取到。所以我們需要抽樣,比如在推斷性統(tǒng)計(jì)中,我們會(huì)經(jīng)常通過(guò)采樣的樣本數(shù)據(jù)來(lái)推斷估計(jì)總體的樣本。

上面所說(shuō)的都是以概率為基礎(chǔ)的,實(shí)際上還有一類(lèi)非概率的抽樣方法,因此總體上歸納為兩大種類(lèi):

概率抽樣:根據(jù)概率理論選擇樣本,每個(gè)樣本有相同的概率被選中。

非概率抽樣:根據(jù)非隨機(jī)的標(biāo)準(zhǔn)選擇樣本,并不是每個(gè)樣本都有機(jī)會(huì)被選中。

概率抽樣技術(shù)

1.隨機(jī)抽樣(Random Sampling)

這也是最簡(jiǎn)單暴力的一種抽樣了,就是直接隨機(jī)抽取,不考慮任何因素,完全看概率。并且在隨機(jī)抽樣下,總體中的每條樣本被選中的概率相等。

比如,現(xiàn)有10000條樣本,且各自有序號(hào)對(duì)應(yīng)的,假如抽樣數(shù)量為1000,那我就直接從1-10000的數(shù)字中隨機(jī)抽取1000個(gè),被選中序號(hào)所對(duì)應(yīng)的樣本就被選出來(lái)了。

Python中,我們可以用random函數(shù)隨機(jī)生成數(shù)字。下面就是從100個(gè)人中隨機(jī)選出5個(gè)。

import random
population = 100
data = range(population)
print(random.sample(data,5))
> 4, 19, 82, 45, 41

2.分層抽樣(Stratified Sampling)

分層抽樣其實(shí)也是隨機(jī)抽取,不過(guò)要加上一個(gè)前提條件了。在分層抽樣下,會(huì)根據(jù)一些共同屬性將帶抽樣樣本分組,然后從這些分組中單獨(dú)再隨機(jī)抽樣。

因此,可以說(shuō)分層抽樣是更精細(xì)化的隨機(jī)抽樣,它要保持與總體群體中相同的比例。 比如,機(jī)器學(xué)習(xí)分類(lèi)標(biāo)簽中的類(lèi)標(biāo)簽0和1,比例為3:7,為保持原有比例,那就可以分層抽樣,按照每個(gè)分組單獨(dú)隨機(jī)抽樣。

Python中我們通過(guò)train_test_split設(shè)置stratify參數(shù)即可完成分層操作。

from sklearn.model_selection import train_test_split

stratified_sample, _ = train_test_split(population, test_size=0.9, stratify=population[['label']])
print (stratified_sample)

3.聚類(lèi)抽樣(Cluster Sampling)

聚類(lèi)抽樣,也叫整群抽樣。它的意思是,先將整個(gè)總體劃分為多個(gè)子群體,這些子群體中的每一個(gè)都具有與總體相似的特征。也就是說(shuō)它不對(duì)個(gè)體進(jìn)行抽樣,而是隨機(jī)選擇整個(gè)子群體。

Python可以先給聚類(lèi)的群體分配聚類(lèi)ID,然后隨機(jī)抽取兩個(gè)子群體,再找到相對(duì)應(yīng)的樣本值即可,如下。

import numpy as np
clusters=5
pop_size = 100
sample_clusters=2
# 間隔為 20, 從 1 到 5 依次分配集群100個(gè)樣本的聚類(lèi) ID,這一步已經(jīng)假設(shè)聚類(lèi)完成
cluster_ids = np.repeat([range(1,clusters+1)], pop_size/clusters)
# 隨機(jī)選出兩個(gè)聚類(lèi)的 ID
cluster_to_select = random.sample(set(cluster_ids), sample_clusters)
# 提取聚類(lèi) ID 對(duì)應(yīng)的樣本
indexes = [i for i, x in enumerate(cluster_ids) if x in cluster_to_select]
# 提取樣本序號(hào)對(duì)應(yīng)的樣本值
cluster_associated_elements = [el for idx, el in enumerate(range(1, 101)) if idx in indexes]
print (cluster_associated_elements)

4.系統(tǒng)抽樣(Systematic Sampling)

系統(tǒng)抽樣是以預(yù)定的規(guī)則間隔(基本上是固定的和周期性的間隔)從總體中抽樣。比如,每 9 個(gè)元素抽取一下。一般來(lái)說(shuō),這種抽樣方法往往比普通隨機(jī)抽樣方法更有效。

下圖是按順序?qū)γ?9 個(gè)元素進(jìn)行一次采樣,然后重復(fù)下去。

Python實(shí)現(xiàn)的話可以直接在循環(huán)體中設(shè)置step即可。

population = 100
step = 5
sample = [element for element in range(1, population, step)]
print (sample)

5.多級(jí)采樣(Multistage sampling)

在多階段采樣下,我們將多個(gè)采樣方法一個(gè)接一個(gè)地連接在一起。比如,在第一階段,可以使用聚類(lèi)抽樣從總體中選擇集群,然后第二階段再進(jìn)行隨機(jī)抽樣,從每個(gè)集群中選擇元素以形成最終集合。

Python代碼復(fù)用了上面聚類(lèi)抽樣,只是在最后一步再進(jìn)行隨機(jī)抽樣即可。

import numpy as np
clusters=5
pop_size = 100
sample_clusters=2
sample_size=5
# 間隔為 20, 從 1 到 5 依次分配集群100個(gè)樣本的聚類(lèi) ID,這一步已經(jīng)假設(shè)聚類(lèi)完成
cluster_ids = np.repeat([range(1,clusters+1)], pop_size/clusters)
# 隨機(jī)選出兩個(gè)聚類(lèi)的 ID
cluster_to_select = random.sample(set(cluster_ids), sample_clusters)
# 提取聚類(lèi) ID 對(duì)應(yīng)的樣本
indexes = [i for i, x in enumerate(cluster_ids) if x in cluster_to_select]
# 提取樣本序號(hào)對(duì)應(yīng)的樣本值
cluster_associated_elements = [el for idx, el in enumerate(range(1, 101)) if idx in indexes]
# 再?gòu)木垲?lèi)樣本里隨機(jī)抽取樣本
print (random.sample(cluster_associated_elements, sample_size))

非概率抽樣技術(shù)

非概率抽樣,毫無(wú)疑問(wèn)就是不考慮概率的方式了,很多情況下是有條件的選擇。因此,對(duì)于無(wú)隨機(jī)性我們是無(wú)法通過(guò)統(tǒng)計(jì)概率和編程來(lái)實(shí)現(xiàn)的。這里也介紹3種方法。

1.簡(jiǎn)單采樣(convenience sampling)

簡(jiǎn)單采樣,其實(shí)就是研究人員只選擇最容易參與和最有機(jī)會(huì)參與研究的個(gè)體。比如下面的圖中,藍(lán)點(diǎn)是研究人員,橙色點(diǎn)則是藍(lán)色點(diǎn)附近最容易接近的人群。

2.自愿抽樣(Voluntary Sampling)

自愿抽樣下,感興趣的人通常通過(guò)填寫(xiě)某種調(diào)查表格形式自行參與的。所以,這種情況中,調(diào)查的研究人員是沒(méi)有權(quán)利選擇任何個(gè)體的,全憑群體的自愿報(bào)名。比如下圖中藍(lán)點(diǎn)是研究人員,橙色的是自愿同意參與研究的個(gè)體。

3.雪球抽樣(Snowball Sampling)

雪球抽樣是說(shuō),最終集合是通過(guò)其他參與者選擇的,即研究人員要求其他已知聯(lián)系人尋找愿意參與研究的人。比如下圖中藍(lán)點(diǎn)是研究人員,橙色的是已知聯(lián)系人,黃色是是橙色點(diǎn)周?chē)钠渌?lián)系人。

總結(jié)

以上就是8種常用抽樣方法,平時(shí)工作中比較常用的還是概率類(lèi)抽樣方法,因?yàn)闆](méi)有隨機(jī)性我們是無(wú)法通過(guò)統(tǒng)計(jì)學(xué)和編程完成自動(dòng)化操作的。

比如在信貸的風(fēng)控樣本設(shè)計(jì)時(shí),就需要從樣本窗口通過(guò)概率進(jìn)行抽樣。因?yàn)椴蓸拥馁|(zhì)量基本就決定了你模型的上限了,所以在抽樣時(shí)會(huì)考慮很多問(wèn)題,如樣本數(shù)量、是否有顯著性、樣本穿越等等。在這時(shí),一個(gè)良好的抽樣方法是至關(guān)重要的。

到此這篇關(guān)于Python實(shí)現(xiàn)8種常用抽樣方法的文章就介紹到這了,更多相關(guān)Python 抽樣方法內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python使用pandas抽樣訓(xùn)練數(shù)據(jù)中某個(gè)類(lèi)別實(shí)例
  • python實(shí)現(xiàn)的分層隨機(jī)抽樣案例
  • python數(shù)據(jù)預(yù)處理 :數(shù)據(jù)抽樣解析
  • 基于python進(jìn)行抽樣分布描述及實(shí)踐詳解
  • python Pandas如何對(duì)數(shù)據(jù)集隨機(jī)抽樣

標(biāo)簽:上饒 湖北 西寧 盤(pán)錦 潮州 珠海 佳木斯 宜昌

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Python實(shí)現(xiàn)8種常用抽樣方法》,本文關(guān)鍵詞  Python,實(shí)現(xiàn),8種,常用,抽樣,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Python實(shí)現(xiàn)8種常用抽樣方法》相關(guān)的同類(lèi)信息!
  • 本頁(yè)收集關(guān)于Python實(shí)現(xiàn)8種常用抽樣方法的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    日本免费乱理伦片在线观看2018| 国产极品白嫩美女在线观看看| 99色视频在线| 国产麻豆精品视频| 韩国毛片基地| 欧美电影免费看大全| 日韩女人做爰大片| 日本在线www| 国产伦久视频免费观看 视频| 精品在线观看一区| 亚洲第一视频在线播放| 在线观看成人网| 精品国产亚洲一区二区三区| 亚洲www美色| 欧美日本二区| 欧美爱爱网| 午夜在线观看视频免费 成人| 免费一级生活片| 中文字幕一区二区三区 精品| 精品在线观看国产| a级毛片免费观看网站| 日韩在线观看视频网站| 日韩一级黄色片| 成人a级高清视频在线观看| 香蕉视频久久| 香蕉视频久久| 国产精品免费久久| 99热精品在线| 国产麻豆精品高清在线播放| 一级毛片视频在线观看| 国产精品自拍在线| 日韩一级黄色大片| 亚洲精品久久久中文字| 99色播| 国产伦理精品| 欧美激情一区二区三区视频高清 | 精品久久久久久中文| a级精品九九九大片免费看| 99久久精品国产高清一区二区| 天天做人人爱夜夜爽2020毛片| 台湾毛片| 色综合久久天天综合| 欧美1区2区3区| 欧美一级视| 午夜在线亚洲男人午在线| 精品国产一区二区三区久久久蜜臀 | 99色视频| 精品视频免费在线| 国产原创中文字幕| 久久精品店| 九九精品影院| 国产网站免费观看| 香蕉视频久久| 免费一级片在线| a级毛片免费全部播放| 国产不卡在线看| 欧美激情一区二区三区在线播放 | 91麻豆爱豆果冻天美星空| 久久精品免视看国产明星| 韩国三级一区| 亚洲天堂免费| 欧美大片aaaa一级毛片| 国产原创视频在线| 国产国语在线播放视频| 日韩在线观看免费| 日韩中文字幕一区| 免费毛片基地| 黄色免费三级| 四虎影视库| 国产伦理精品| 午夜家庭影院| 国产综合成人观看在线| 国产欧美精品| 日韩av片免费播放| 免费一级生活片| 午夜在线影院| 美女免费精品视频在线观看| 欧美激情在线精品video| 九九干| 国产不卡在线观看视频| 深夜做爰性大片中文| 99色播| 精品国产香蕉伊思人在线又爽又黄| 999精品影视在线观看| a级毛片免费全部播放| 国产一区二区福利久久| 可以免费看污视频的网站| 91麻豆精品国产高清在线| 国产成人精品一区二区视频| 美女免费精品高清毛片在线视| 91麻豆精品国产综合久久久| 日韩中文字幕在线播放| 国产精品自拍一区| 日韩在线观看网站| 成人在激情在线视频| 日韩av成人| 欧美大片一区| 欧美另类videosbestsex高清| 欧美a级大片| 日韩字幕在线| 亚洲爆爽| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 国产91丝袜在线播放0| 91麻豆精品国产综合久久久| 999久久久免费精品国产牛牛| 天天做日日爱| 精品国产亚洲人成在线| 日韩专区一区| 麻豆午夜视频| 日韩欧美一二三区| 国产韩国精品一区二区三区| 国产视频一区二区在线观看| 国产不卡在线看| 香蕉视频一级| 999久久久免费精品国产牛牛| 日本免费区| 久久福利影视| 欧美国产日韩久久久| 精品视频一区二区三区| 亚洲爆爽| 成人免费网站久久久| 日韩中文字幕在线亚洲一区| 99久久精品国产免费| 日韩中文字幕在线播放| 精品久久久久久中文字幕2017| 国产视频久久久| 国产伦久视频免费观看 视频| 国产视频一区二区在线观看| 成人av在线播放| 日韩免费片| 日本免费区| 国产视频一区二区在线观看| 欧美一级视| 国产一区二区高清视频| 午夜欧美成人久久久久久| 欧美激情一区二区三区视频高清 | 999久久狠狠免费精品| 亚飞与亚基在线观看| 亚洲精品影院久久久久久| 欧美大片aaaa一级毛片| 免费国产一级特黄aa大片在线| 国产一区二区福利久久| 天天做日日爱夜夜爽| 日韩在线观看视频免费| 欧美爱爱网| 中文字幕一区二区三区 精品| 亚欧成人乱码一区二区 | 精品在线观看国产| 天天色成人网| 九九久久99综合一区二区| 亚洲精品久久久中文字| 亚欧成人乱码一区二区 | 亚洲精品影院一区二区| 台湾毛片| 免费一级片在线| 欧美激情一区二区三区视频高清| 青青久久国产成人免费网站| 九九久久国产精品| 国产网站免费视频| 日韩在线观看视频网站| 久久精品成人一区二区三区| 国产91丝袜在线播放0| 国产不卡高清| 一级片免费在线观看视频| 国产不卡在线观看视频| 99热精品在线| 99热视热频这里只有精品| 日韩一级黄色大片| 精品视频一区二区| 欧美电影免费看大全| 国产一区二区精品| 欧美爱色| 精品视频一区二区三区免费| 999精品在线| 国产视频一区二区在线播放| 欧美日本免费| 日日爽天天| 欧美激情一区二区三区在线| 香蕉视频一级| 韩国毛片免费| 国产a视频| 久久99青青久久99久久| 精品国产一区二区三区免费 | 日日夜夜婷婷| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 可以免费在线看黄的网站| 国产福利免费观看| 久久国产影视免费精品| 午夜家庭影院| 国产国语对白一级毛片| 色综合久久天天综合绕观看| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 欧美国产日韩在线| 精品国产亚一区二区三区| 成人a级高清视频在线观看| 日本免费区| 麻豆午夜视频| 欧美国产日韩精品| 色综合久久天天综合| 999久久狠狠免费精品|